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Elastic gridshells comprise an initially planar network of elastic
rods that are actuated into a shell-like structure by loading their
extremities. The resulting actuated form derives from the elastic
buckling of the rods subjected to inextensibility. We study elastic
gridshells with a focus on the rational design of the final shapes.
Our precision desktop experiments exhibit complex geometries,
even from seemingly simple initial configurations and actuation
processes. The numerical simulations capture this nonintuitive
behavior with excellent quantitative agreement, allowing for an
exploration of parameter space that reveals multistable states.
We then turn to the theory of smooth Chebyshev nets to address
the inverse design of hemispherical elastic gridshells. The results
suggest that rod inextensibility, not elastic response, dictates the
zeroth-order shape of an actuated elastic gridshell. As it turns out,
this is the shape of a common household strainer. Therefore, the
geometry of Chebyshev nets can be further used to understand
elastic gridshells. In particular, we introduce a way to quantify the
intrinsic shape of the empty, but enclosed regions, which we then
use to rationalize the nonlocal deformation of elastic gridshells to
point loading. This justifies the observed difficulty in form find-
ing. Nevertheless, we close with an exploration of concatenating
multiple elastic gridshell building blocks.

elastic structures | gridshells | buckling | Chebyshev nets | mechanical
instabilities

Camping tents create curved shell-like structures in three
dimensions (3D) through elastic buckling of a network of

rods. In the 1970s, the architectural community transferred this
idea into the realm of large-scale construction (1) by introducing
the concept of an elastic gridshell, a regular grid of elastic rods
that is actuated into a shell-like structure by loading its extrem-
ities. Research has since focused mostly on case studies (1–3)
and computational form finding of the static actuated geome-
try (4–6). Elastic gridshells fit with the recent trend in extreme
mechanics to design through buckling, by harnessing the under-
lying geometry (7, 8). Examples of these geometry-driven struc-
tures range from microscopic buckling of a series of ribbons
attached to a prestretched substrate (9) to macroscopic origami-
inspired engineering (10, 11).

The buckled forms of elastic gridshells (Fig. 1A) suggest a non-
trivial functional relationship between the initially flat, regular
grid and the ensuing actuated geometry, making both forward
and inverse design challenging tasks. This relationship juxtaposes
rod elasticity and inextensibility, which are well understood in
1D as classical Euler’s elastica (12), with a network of 2D con-
straints that oversee the emergence of a shell-like structure. This
network can be modeled, on the one hand, from the perspective
of interacting constrained elastica (13–15), an approach that is
common in the study of random 3D polymer systems (16), but
not as well explored for structured 2D networks. On the other
hand, an elastic network can be modeled as a continuum of inex-
tensible rods subjected to bending or shearing (17–20), which
results in Euler–Lagrange equations but whose tractable solu-
tions are often restricted to a plane or particular simple geome-
tries. Instead of the variational approach, one can encode an
elastic grid as a purely geometric object using the differential
geometry of surfaces (21). This approach was taken by P. L.

Chebyshev in the 1880s (22) while investigating the deformations
of woven fabric. The resulting theory of smooth Chebyshev nets
is an ongoing topic of research which is one of the central themes
of our study.

Here, we combine both perspectives of an elastic gridshell as
an ensemble of constrained elastica and a continuum of inexten-
sible rods to provide a quantitative description of their behav-
ior. We focus on rationalizing the design challenges that under-
lie the actuation process and the resulting shape. Our physical
model implements a 2D network of inextensible elastic rods in
a desktop-scale setting that allows for high-precision validation
against numerical simulations and theory. For simulations, we
extend the discrete elastic rod (DER) method (23, 24) to elastic
gridshells. We find excellent agreement with experiments (Fig.
1), allowing us to explore the parameter space of a seemingly
simple elastic gridshell. This exploration reveals the complexity
of actuation and forward design, as well as the presence of multi-
stability. We then interpret elastic gridshells as both a network of
smooth rods and a continuum by finitely sampling a Chebyshev
net. This perspective enables an inverse design process, whose
results suggest that rod inextensibility—not elasticity—is primary
in dictating the zeroth-order shape of an actuated elastic grid-
shell. Moreover, our combined perspective allows us to harness
theorems about smooth Chebyshev nets to rationalize elastic
gridshell shape. This leads to quantitative investigations of their
nonlocal response to loading and provides justification of the
difficulties in form finding. We, therefore, expose the geometry-
driven nature of elastic gridshells.

Significance

Elastic gridshells arise from the buckling of an initially pla-
nar grid of rods. The interaction of elasticity and geomet-
ric constraints makes their actuated shapes difficult to pre-
dict using classical methods. However, recent progress in
extreme mechanics reveals the benefits of structures that
buckle by design, when exploiting underlying geometry. Here,
we demonstrate the geometry-driven nature of elastic grid-
shells. We use a geometric model, originally for woven fabric,
to rationalize their actuated shapes and describe their non-
local response to loading. Validation is provided with preci-
sion experiments and rod-based simulations. The prominence
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Fig. 1. (A and B) Actuation of an elastic gridshell from (A) experiments
and (B) DER simulation. The edge points of a planar and unloaded foot-
print (A1 and B1) are gradually moved toward a prescribed actuated
boundary (A2 and B2) to yield an actuated shape (A3 and B3). (Scale bar,
20 mm.)

Anatomy and Actuation of an Elastic Gridshell
Our model system comprises a planar, completely unloaded foot-
print of elastic rods that is actuated by loading its extremities
(Fig. 1 A1). A footprint is constructed from straight elastic rods
that are assumed to be inextensible (Materials and Methods).
First, two sets of parallel rods with spacing d are laid perpen-
dicularly. Then, the points of contact between cross-laid rods are
constrained by joints. A square grid results, where each empty
unit cell is enclosed by four adjacent rod segments of length d .
Finally, the square grid is cut along an original boundary that
encloses the footprint. A footprint thus contains a region of
square grid and a boundary layer of “legs” extending to edge
points along the original boundary. Pinning these edge points
onto an actuated boundary of smaller perimeter induces out-of-
plane buckling. The ensuing 3D actuated form is dictated by a
combination of the elastic deformation of the rods and the geo-
metric constraints of the grid. Without joints, each rod would
act as an independent Euler’s elastica (12). Instead, the system
behaves as a shell-like structure, whose shape, in contrast to a
continuum shell, must be rationalized by resolving its actuated
unit cells. We explored the form finding of elastic gridshells,
using precision desktop-scale experiments (Materials and Meth-
ods). Elastomeric joints enforce positional constraints between
cross-laid Nitinol rods, with negligible resistance to both shear of
the unit cells and transport of twist along each rod. The super-
elastic nature of Nitinol ensures that the gridshell remains elas-
tic throughout actuation. Pinned boundary conditions at the edge
points are set by 3D-printed ball joints, which, for actuation, were
manually fitted onto a series of laser-cut holes on the designated
actuated boundary (Fig. 1A).
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Fig. 2. Elastic gridshells with circular boundaries. (A) Multistable states of a circular elastic gridshell with (L̄d, n) = (0.8, 12) observed from experiments
(red solid circles) and simulations (black lines). (B) Phase diagram of elastic gridshells with circular boundaries. In addition to the three states in A, a convex
dome-shaped state (B, Inset) is obtained by extending the legs. Each data point is obtained from DER simulations under a jittering procedure. (C) Four
representative modes of the circular elastic gridshells with different symmetry properties.

In parallel to the experiments, we performed numerical simu-
lations using the DER method, which was originally developed
in the computer graphics community for the realistic visualiza-
tion of filamentous structures such as hair and fur (23, 24). More
recently, DER has been shown to be remarkably predictive in
engineering contexts to quantify large deformations of elastic
rods (25). Our current implementation of DER simulates elas-
tic gridshells using rods under Kirchhoff’s assumptions, with the
same physical parameters as in experiments. The positional con-
straints imposed by joints are modeled by stiff effective springs
(Materials and Methods).

In Fig. 1 and Movie S1, we show representative examples,
from both physical experiments (Fig. 1 A1–A3) and numeri-
cal simulations (Fig. 1 B1–B3), of a footprint with a circular
original boundary, with radius Ro = 126.0 mm, that was grad-
ually compressed to circular actuated boundaries with radii
Ra [mm] = {126.0, 115.9, 94.5}. Excellent qualitative agreement
is found between the two. As the actuation progresses, the height
of the midsection increases and a dome-shaped gridshell emerges.
We also consider noncircular boundaries.

Elastic Gridshells with Circular Boundaries
Even though the original and actuated boundaries in the exam-
ple of Fig. 1 were both circular, the resulting actuated geome-
tries were surprisingly complex (we expected to find entirely con-
cave domes). This behavior is a signature of higher-order modes,
which are known to arise in the theory of constrained elastica
(13–15), and suggests the presence of multistability. Moreover,
these complex geometries point to a nontrivial functional rela-
tionship between footprints and their actuated forms, which we
address next.

In Fig. 2 A1–A3, we show three multistable states of the
same elastic gridshell, in both experiment and simulation. The
experimental state is represented by the positions of its joints
(red solid circles) acquired via 3D laser scanning (Materials
and Methods) and was obtained by manually point loading
the actuated form and allowing it to snap into a new state.
The corresponding multistable numerical solutions (solid lines)
were computed by a jittering algorithm (Materials and Meth-
ods) and are in excellent quantitative agreement with experi-
ments; the maximum joint positional mismatch is within two
joint radii.

Given the accurate predictions from our simulations, we now
rely on DER to systematically explore the parameter space of
elastic gridshells with circular boundaries. The radius of the actu-
ated boundary is set to Ra = 0.75Ro. To investigate boundary
layer effects, we consider the longest “leg” in a footprint with
n rods per direction, normalized by its unit cell spacing d ; i.e.,
L̄d = L

d
= Ro

d
− n−1

2
. We further enforce L̄d > 0 (otherwise, the

number of rods would reduce to n − 2). In Fig. 2B, we show the
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resulting phase diagram in the (L̄d ,n) parameter space, where
each footprint was actuated and subject to our jittering algo-
rithm. We observe four qualitatively distinct states; examples are
shown in Fig. 2 C1–C4. All footprints considered have four sym-
metry planes (y = x , y =−x , x = 0, and y = 0). State i retains full
symmetry and involves only first-order rod buckling, resulting in
concave domes. States ii and iii exhibit symmetry breaking and
higher-order buckling; state ii retains only two symmetry planes
while state iii retains only 90◦ rotational symmetry. In contrast,
state iv also involves higher-order buckling but retains full sym-
metry.

We interpret the presence of multistability in Fig. 2B by con-
sidering the normalized length of the shortest leg; i.e., ¯̀

d = `
d

=[(
Ro
d

)2 − ( n−1
2

)2]1/2 − n−1
2

. When ¯̀
d > 1, joints still constrain

the overall shape, but do not prevent all rods from exhibiting
first-order buckling, and result in monostable concave domes.
The onset of multistable states occurs for ¯̀

d . 1. Note that, even
though L̄d ≥ 0, the quantity ¯̀

d can be nonpositive. We observe
that states iii and iv start to appear for ¯̀

d ≈ 0, and they occur for
almost all possible configurations when ¯̀

d . −1.
Even though we got concave domes by increasing the footprint

legs, the ensuing geometries were not hemispherical despite hav-
ing circular boundaries. How can one obtain a hemispherical
gridshell? Can we better understand the anisotropy induced by
rod inextensibility?

Hemispherical Elastic Gridshells from Chebyshev Nets
In Fig. 3A, we show an experimental gridshell with .2% point-
wise deviation from a hemisphere. The original boundary of
its footprint is a rounded diamond (Fig. 3B, outermost curve).
Recall from above that, by contrast, circular original boundaries
produced complex, multistable geometries (Fig. 2A). We demon-
strate how the continuum theory of Chebyshev nets (22, 26) can
be used to rationally design and quantify the geometry of elas-
tic gridshells, as in the example of Fig. 3A. Whereas a discrete
analog of Chebyshev nets [which approximates all rod segments
between joints by straight lines of the same length (27)] has pre-
viously been used for this class of problems (1, 5, 6), we empha-
size the relationship to smooth Chebyshev nets. This perspective
offers three benefits for elastic gridshells: (i) a precise method to
quantify the accuracy of the actuated forms vis-à-vis the original
target designs, (ii) a quantitative characterization of the geome-
try at the level of the curved unit cells, and (iii) a rationale for
the nonlocal response to loading.

A Review of Chebyshev Nets. Before continuing with our own
work, we provide a brief review of a smooth Chebyshev net,
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Fig. 3. Hemispherical elastic gridshells from Chebyshev’s hemisphere ansatz. (A) Photograph of a nearly hemispherical gridshell. (B) Boundary of the
hemisphere domain (outermost contour) and spherical caps (five inner contours) obtained by cutting with planes (Inset). (C) Positions of the joints (red
solid circles; 3D scanning), along with the corresponding DER simulation (black solid lines) and the d-sampled Chebyshev net (blue solid lines). (D) Spherical-
cap elastic gridshells obtained from DER simulations, whose footprints are shown in B. Colorbar represents deviation from the d-sampled Chebyshev net
normalized by the radius of the sphere, ē = ∆/ρ. (E and F) A household strainer of z∗/ρ= 0.28 (E) and its flattened 2D domain (F), showing excellent
agreement with a Chebyshev domain (solid line).

defined as a smooth parameterized surface patch C :D ⊂R2→
R3, from a domain D in 2D with its orthogonal coordinate
system (u, v) to a smooth surface in 3D, under the condition
‖∂C/∂u(u, v)‖ = ‖∂C/∂v(u, v)‖= 1. Physically, this condition
corresponds to inextensibility of the rods along the two initially
perpendicular parameter directions. We regard C as the defor-
mation of a continuum planar domain of inextensible rods into
a surface, during which crossing rods shear freely at joints. The
shear angle function 0 < ω(u, v) < π turns the unit tangent
vector ∂C/∂u into ∂C/∂v .We focus on smooth Chebyshev nets
that do not have singularities; i.e., no rod collapses onto another
with ω ∈{0, π}.

A smooth Chebyshev net exists locally around each point of a
surface (18, 28), but a global obstruction constraining the curva-
ture arises from the necessary Gauss equation (21)

−K(u, v) sinω(u, v) =
∂2

∂u∂v
ω(u, v), [1]

which enforces a strict coupling between shear and Gauss cur-
vature, K(u, v). As rods shear, infinitesimal squares deform into
rhombi, and the surface area element is dA = sinω dudv . Inte-
grating Eq. 1 (with respect to u and v) over an axis-aligned rect-
angle (denoted as �) yields a seminal result due to Hazzidakis
(ref. 29; see also ref. 21): The integrated Gauss curvature of
each deformed rectangle depends only on its four interior angles
0 < αi < π, ∫

C(�)

K(u, v)dA= 2π −
4∑

i=1

αi , [2]

so the maximum integrated Gauss curvature of every region
enclosed by four rods is 2π. Due to this inability to encode
regions with high curvature, finding a singularity-free smooth
Chebyshev net that lies on, or approximates to, an entire arbi-
trary target shape is challenging and the topic of much ongoing
theoretical (30–34) and applied research (35–37). The key idea
is to carefully design the domain, which translates into the foot-
print of an elastic gridshell.

Footprint and Actuation Ansatzes from a Chebyshev Net. We use
smooth Chebyshev nets as educated guesses (ansatzes) for the
design of elastic gridshells that provide solutions under the non-
trivial inextensibility conditions, but neglect bending.

Formalizing an elastic gridshell, we define its footprint Fd
b by

an enclosing original boundary b, which cuts an infinite square
grid of spacing d . A correspondence g : b→ a between positions
along b and an actuated boundary a determines the location of
the pinned edge points. The resulting actuated elastic gridshell
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is represented by G: Fd
b→ R3. A specific Chebyshev net C is

regarded as a viable ansatz if, for each position b ∈ b of the orig-
inal boundary that maps to an actuated position a ∈ a, we have
C(b) = g(b) = a . Determining a viable ansatz for an elastic grid-
shell involves three steps. First, we specify an actuated boundary
a in the Chebyshev net surface. Second, we compute the origi-
nal boundary in the domain by solving for the contour C(b) = a.
Third, we fix d > 0 to determine the footprint Fd

b enclosed by b.
Our ansatz procedure does not consider the pinned bound-

ary conditions on the actuated boundary, which lead to higher-
order constraints from variational considerations of the bend-
ing energy (19). Therefore, we quantify deviations, as follows,
to attest the accuracy of viable Chebyshev net ansatzes. We
first restrict C to points of the footprint Fd

b (d sampling of the
Chebyshev net). Then, for each footprint point, x∈ Fd

b , we
define ∆(x ) = ‖C(x ) − G(x )‖, the pointwise distance between
an actuated elastic gridshell and a d -sampled viable ansatz.

Elastic Gridshells That Resemble Spherical Caps. With the goal of
designing hemispherical and spherical-cap gridshells, we con-
sider Chebyshev’s hemisphere Ch (22, 26, 38, 39) (see SI
Appendix, S1. Hemispherical Ansatz for details on its construc-
tion). We then use Ch as a viable ansatz by solving for the orig-
inal boundary (shown as the outermost contour of Fig. 3B) that
corresponds to an actuated boundary of the equator and fix-
ing a unit cell spacing d = 20 mm. This yields a footprint Fd

b ,
which is then actuated into an elastic gridshell Gh . In Fig. 3 C1
and C2, we quantify the deviation between the computed d sam-
pling of Ch (blue curves) and the elastic gridshells corresponding
to Gh obtained from both DER simulations (black curves) and
experiments (red solid circles). A visual comparison is shown in
Fig. 3 C1, while Fig. 3 C2 plots the data using spherical coor-
dinates without longitudinal information (radius r , latitude φ);
there is excellent agreement between theory, simulations, and
experiments. Hereafter, we compare a viable ansatz only with a
DER actuated elastic gridshell. Quantitatively, we find that there
is .2% deviation between the d -sampled Ch and the DER elas-
tic gridshell Gh (using ∆ as introduced above).

To further affirm the strength of our ansatz protocol, we use
the same Ch to compute original boundaries of footprints for
other spherical caps. Circles of latitude are used to slice the
hemisphere by planes at varying heights (0 ≤ z∗/ρ < 1) and
understood as actuated boundaries az∗ . Note that ρ is the fixed
radius of the sphere and agrees with the radius of az∗ only when
z∗/ρ= 0 (entire hemisphere). After fixing d = 20 mm, the corre-
sponding original boundaries bz∗ (Fig. 3B) yield a series of actu-
ated elastic gridshells Gz∗ . In Fig. 3D, we quantify the result-
ing deviations. As z∗/ρ increases, the deviation decreases from
1.87% (z∗/ρ= 0.3) to 0.17% (z∗/ρ= 0.9). This agreement is sur-
prising since the smaller footprints contain even fewer rods; a
continuum Chebyshev net ansatz may continue to be valid even
for very coarse footprints within the limits of our inextensibility
assumptions, whose applicability is investigated in SI Appendix,
S5. Inextensibility Limits of Elastic Gridshells. To emphasize the
geometric nature of these results, we considered a common
household strainer (Fig. 3E), which also forms a spherical cap
from a network of plastic inextensible rods. Interestingly, its
flattened shape (after being cut along its “actuated boundary”
rim) shows excellent agreement with a corresponding “original
boundary” from Ch (Fig. 3F), thereby pointing to the generality
of our framework.

Deformation of the Unit Cells and Nonlocal Response
Success in deriving elastic gridshells from smooth Chebyshev
net ansatzes suggests broader applicability. We now use smooth
Chebyshev net theory to rationalize the shape of elastic grid-
shells. In particular, we introduce a notion of integrated Gauss

curvature that relates directly to the shearing of the actuated
unit cells. Subsequently, we use this notion to explore the non-
local and highly anisotropic response of elastic gridshell systems
under point-load indentation.

Integrated Gauss Curvature per Unit Cell. Even though the surface
of a unit cell is ill-defined, it does have well-defined crossing
angles at its joints. Using Hazzidakis’ result, Eq. 2, for each unit
cell of an actuated gridshell, we define its integrated Gauss curva-
ture as K� = 2π −

∑4
i=1 αi . If the enclosing rods of an actuated

unit cell were to lie along geodesics, then the Gauss–Bonnet the-
orem (21) would state that the integrated Gauss curvature of the
enclosed region would be

∑4
i=1 αi − 2π, exactly the negative of

our quantity K�. We will see that, generally, K� carries the sign
matching our intuition, implying that we do not interpret elastic
gridshell rods as lying along geodesics of an underlying surface.

Next, we evaluate the validity of the notion of integrated Gauss
curvature, K�, to design and describe elastic gridshells. We study
viable ansatzes from surfaces of constant (i) positive, (ii) zero,
and (iii) negative Gauss curvature, for which we use, respec-
tively, (i) Chebyshev’s hemisphere Ch , (ii) half a circular cylinder
parameterized by helices Cc , and (iii) half an analytic parameter-
ization for a pseudosphere of revolution Cp . The latter two are
special cases of Chebyshev nets on surfaces of revolution (40) (SI
Appendix, S2. Cylindrical and Pseudospherical Ansatzes).

In Fig. 4A, Left to Right, we show that the obtained elastic grid-
shells closely resemble their ansatz d samplings, with only small
deviations. In Fig. 4B, we plot K� vs. the centroid of its four ver-
tices in space along the shown axis. We find that K� matches
our expectation, with actuated unit cells that visually resem-
ble regions of positive, zero, and negative curvature having an
integrated Gauss curvature that is correctly signed. Our chosen
ansatzes do not incorporate bending, which impacts the shape
of the actuated forms. Most prominently, Fig. 4A, Right shows
Gp protruding above its negatively curved Chebyshev ansatz Cp

immediately after leaving its actuated boundary, before dipping
in the middle. This behavior is consistent with a change from
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simulation; black solid lines) and their d-sampled Chebyshev ansatzes (blue
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positive to negative curvature and is reflected in the distribution
of K�, which derives from the actuated elastic gridshell itself,
not a choice of viable ansatz.

We therefore find K� to be an excellent proxy for the curva-
ture of actuated unit cells and its definition in terms of crossing
angles at joints provides a way for us to rationalize the distribu-
tion of shearing across an elastic gridshell.

Nonlocal Response to Point Loading. The quantity K� not only
describes the geometry of elastic gridshells, but also enables us to
interpret and quantify their nonlocal response under point loads.
Given the hyperbolic nature of the underlying Gauss equation,
Eq. 1, the rods can be regarded as characteristics, regularized
by bending energy, that act as “highways of deformation.” As
such, we expect nonlocal behavior to be prevalent in elastic grid-
shells. In contrast, similar loading of a thin isotropic continuum
shell leads to a deformation that is local to a small spherical cap
(41–43).

We subject an actuated hemispherical elastic gridshell Gh to
three types of point loading: (i and ii) inward (i) and outward (ii)
normal displacement at the north pole and (iii) inward displace-
ment at π/4 latitude and longitude. The magnitude of the inden-
tation was chosen to be δo = 0.1ρ. In Fig. 4C, we present the top
view of these loaded elastic gridshells obtained with DER simula-
tions and quantify the displacement from the unloaded, but actu-
ated, state. Corresponding experimental elastic gridshells under
manual indentation are shown in Movie S2. The response for all
three loading cases of the hemispherical elastic gridshell is strik-
ingly nonlocal. Case i introduces not only a local dimpled cap but
also displacements at the midpoints and corners of the largest
concentric curved rhombus, nearly reaching the boundary. Case
ii causes the center pair of rods to approach their inextensibil-
ity limits, forcing displacements to reach down to the equator.
Case iii introduces displacement in a series of concentric curved
rhombi that span the system.

This nonlocal response can further be rationalized using K�.
Movies S3–S5 present the time evolution of the spatial distribu-
tion of K� for the above indentation cases i–iii. Each actuated
unit cell is segmented by the centroid of its vertices along the axis
shown in Fig. 4A, Left (total length 2L). In Fig. 4D, as a snap-
shot, we plot the spatial average of K� vs. bins of size 0.4/L.
The SD within a bin measures the spatial heterogeneity of the
curvature carried by each quad. The unindented gridshell con-
figuration is treated as reference. Upon indentation (in all three
cases), the shear response is highly nonlocal, and the spatial dis-
tribution of K� changes along its entire extent (Movies S3–S5).
Interestingly, as indicated by horizontal lines in Movies S3–S5, the
total integrated Gauss curvature (sum of all K�) remains con-
stant throughout the indentation. This result reinforces that K�

is a valid reflection (beyond shearing) of integrated Gauss curva-
ture. Moreover, a constant total K� establishes that nonlocality
in elastic gridshells is related to the regions enclosed by rods.

Assembling with Building Blocks
Finally, we seek to assemble building blocks into more complex
structures. Our idea is to concatenate both individual footprints
and in-plane actuated boundaries, which reduces the task of
directly tackling a full target design. In Fig. 5 A1–A3, we present
three examples of building blocks: a quarter-sphere, a cylinder,
and a saddle. These building blocks are similar to the solutions in
Fig. 4A, but their footprints and corresponding actuated bound-
aries have been strategically pruned at connection sites, where
cross-laid rods form a series of v-shaped notches. This pruning
ensures smooth assembly, with moderate deviation between the
rod positions and tangents. For example, we pruned the building
blocks in Fig. 5 A1–A3 so that connection sites lie on half-circles

of similar radii, which also removed the saddle’s boundary rings
(SI Appendix, S2. Cylindrical and Pseudospherical Ansatzes).

Two example geometries are targeted: a stadium (central
cylinder capped by quarter-spheres) and a peanut (central sad-
dle capped by quarter-spheres). The concatenated footprints,
together with their actuated boundaries, are provided in Fig.
5 B1 and B2. The resulting actuated geometries are shown in
Fig. 5 C1 and C2, where the building blocks (colored lines)
are superposed onto the actuated assemblage elastic gridshells
obtained from the DER (black lines). We find excellent qualita-
tive agreement between building blocks and assemblages. In Fig.
5D, we present an experimental peanut-shaped elastic gridshell
obtained from the footprint in Fig. 5 B2. In Fig. 5E we overlay the
digitized experimental joint positions (red solid circles; Materials
and Methods) with the DER simulation (black solid lines), which
again exhibit excellent agreement; the maximum joint positional
mismatch is within two joint radii.

Conclusion
We systematically explored elastic gridshells by combining the-
ory with numerical and physical experiments. The design space
of elastic gridshells with circular boundaries revealed a nontriv-
ial relationship between flat and actuated geometries, as well as
the possibility of multistability. We then turned to the role of
inextensibility in the footprint design and created hemispherical
elastic gridshells from a Chebyshev ansatz. The excellent agree-
ment between Chebyshev’s hemisphere and the resulting elastic
gridshells motivated our further use of this theory. Using the for-
mula of Hazzidakis, Eq. 2, we quantified the intrinsic shape of the
empty unit cells. This justified the difficulty in bottom–up form
finding by providing a quantification of the nonlocal response of
elastic gridshells. Nevertheless, we briefly suggested an approach
to more targeted design through elastic gridshell building blocks.

Our investigations revealed the geometry-driven nature of
elastic gridshells by merging the two perspectives of both an elas-
tic gridshell as a finite network of elastic rods and a continuum
of inextensible rods. This suggests that elastic gridshells, beyond
their current use at the macroscale, may scale down to micro-
or nanolength scales, where complex geometries arising from
simple actuation have had exciting applications (9). In particu-
lar, exploring 1-df actuation techniques may lead to new modes
of self-assembly. Complementing these explorations, one can
move beyond our purely geometric treatment of elastic gridshells
and focus on their mechanical and scale-dependent aspects, e.g.,
through the use of twist-transmitting joints, shear-resisting joints,
or rods of nonlinear materials. The numerical framework we
introduced, together with its excellent agreement with experi-
ments, provides a foundation from which to build.

B1 B2

C1 C2

Hemisphere
AssemblageCylinder

Saddle

A1

A2

A3

Experiment
DER Simulation

0
21

1

00

-1 -2

x/
y/

z/

D

E

Fig. 5. Elastic gridshells from building blocks. (A) Pruned elastic grid-
shell building blocks: (A1) hemisphere, (A2) cylinder, and (A3) saddle.
(B and C) Comparison of concatenated elastic gridshell assemblage (black
solid lines) and its building blocks (colored solid lines) for (B1 and C1) sta-
dium (A1-A2-A1) and (B2 and C2) peanut (A1-A3-A1). (D) Photograph of
a peanut-shaped elastic gridshell. (E) Positions of the joints (red solid cir-
cles; 3D scanning), along with the corresponding DER simulation (black solid
lines).
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Materials and Methods
Fabrication of Elastic Gridshells and Their 3D Imaging. A square grid (d =

20 mm) of grooves (depth tg = 500 µm) was etched onto an acrylic plate,
and holes (diameter Dr = 3 mm) were laser cut at the intersections. Nitinol
rods (diameter Dr = 254 µm and Young’s modulus Er = 83 GPa) were placed
onto the positioning grooves of the acrylic plate and the holes served to
cast vinylpolysiloxane (VPS) cylindrical joints (Young’s modulus Ej = 0.23±
0.01 MPa, diameter Dj = 3 mm, height Hj = 5 mm). After the joints cured,
the grid was cut along the original boundary and a speck of liquid glue (Loc-
tite) was applied at each joint to prevent sliding. The 3D-printed ball joints
(diameter Db = 4 mm) were attached at the edge-point extremities of each
rod and manually fixed onto the laser-cut holes along the actuated bound-
ary, resulting in the 3D actuated form (Movie S4). Actuated forms were digi-
tized using a 3D laser scanner (NextEngine), with a resolution of 100µm.
Partly because the diameter of rods was too small to be scanned and
partly because the Nitinol rods reflect the laser beam away, only the joints
could be successfully scanned, each yielding a point cloud. The scanned
points were clustered by proximity and then averaged to obtain each joint
position.

DER Simulations and Jittering Algorithm. A detailed account of DERs is found
in refs. 23 and 24, with further details provided in SI Appendix, S4. Numer-
ical Simulations. The DER method derives equations of motion using the
discretized geometry and is well suited for problems involving elastic rod-
like structures under geometrically nonlinear deformations. Our implemen-
tation generates discretized geometry with joint constraints (modeled as
stiff effective springs) according to an input footprint. To explore multista-
bility for elastic gridshell domes, we applied a jittering algorithm to each
configuration. Partially actuated forms were subjected to an “artificial grav-
itational field” at different levels of intensity. The force field was removed
and actuation progressed until the final actuated boundary was reached.
The resulting actuated forms were classified by symmetry and rod-buckling
modes, as discussed in the main text.

ACKNOWLEDGMENTS. We thank Laelia Kim-Lan Vaulot for help with pre-
liminary experiments. This work was supported by the National Science
Foundation, Faculty Early Career Development Program (CAREER) CMMI-
1351449. A.O.S.-F. was partially supported by the Deutsche Forschungsge-
meinschaft Collaborative Research Center Transregio 109 “Discretization in
Geometry and Dynamics.”

1. Hennicke J, et al. (1974) Grid Shells (IL 10) (Institute for Lightweight Structures,
Stuttgart).

2. Baverel O, Caron JF, Tayeb F, Peloux LD (2012) Gridshells in composite materials: Con-
struction of a 300 m2 forum for the Solidays’ festival in Paris. Struct Eng Int 22:408–
414.

3. Quinn G, Gengnagel C (2014) A review of elastic grid shells, their erection meth-
ods and the potential use of pneumatic formwork. Mobile and Rapidly Assembled
Structures IV , eds De Temmerman N, Brebbia CA (WIT Press, Southampton, UK), pp
129–145.

4. Bulenda T, Knippers J (2001) Stability of grid shells. Comput Struct 79:1161–1174.
5. Hernández EL, Sechelmann S, Rörig T, Gengnagel C (2013) Topology optimisation of

regular and irregular elastic gridshells by means of a non-linear variational method.
Advances in Architectural Geometry 2012, eds Hesselgren L, et al. (Springer, Vienna),
pp 147–160.

6. Lefevre B, Douthe C, Baverel O (2015) Buckling of elastic gridshells. J IASS 56:153–171.
7. Reis PM (2015) A perspective on the revival of structural (In)stability with novel oppor-

tunities for function: From buckliphobia to buckliphilia. J Appl Mech 82:111001.
8. Reis P, Jaeger H, van Hecke M (2015) Designer matter: A perspective. Extreme Mech

Lett 5:25–29.
9. Xu S, et al. (2015) Assembly of micro/nanomaterials into complex, three-dimensional

architectures by compressive buckling. Science 347:154–159.
10. Filipov ET, Tachi T, Paulino GH (2015) Origami tubes assembled into stiff, yet reconfig-

urable structures and metamaterials. Proc Natl Acad Sci USA 112:12321–12326.
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